Viviani's Theorem states that for any point $\mathcal{P}$ inside an equilateral triangle $\mathcal{ABC}$ the sum of the lengths of perpendiculars drawn from P on the sides is equal to the length of the altitude. Draw equilateral triangles from that point onto the sides of the triangle such that these 3 perpendiculars are the altitudes of the equialteral triangles.Now rotate the triangles as shown.Now it can be easily seen that the sum of the 3 perpendiculars=perpendicular of the $\Delta ABC$
$1+2^2+3^2+\cdots+n^2 = \frac{1}{3}n(n+1)\left(n+\frac{1}{2}\right)=\frac{n(n+1)(2n+1)}{6}$ This originally came in Mathematics Magazine (1984 edition). The author of this ingenious proof is Prof. Siu Man Keung. This link provides further information regarding the article.
Comments
Post a Comment